Packing Polynomials on Multidimensional Integer Sectors

نویسنده

  • Luis B. Morales
چکیده

Denoting the real numbers and the nonnegative integers, respectively, by R and N, let S be a subset of Nn for n = 1, 2, . . ., and f be a mapping from Rn into R. We call f a packing function on S if the restriction f |S is a bijection onto N. For all positive integers r1, . . . , rn−1, we consider the integer sector I(r1, . . . , rn−1) = {(x1, . . . , xn) ∈ Nn | xi+1 6 rixi for i = 1, . . . , n − 1}. Recently, Melvyn B. Nathanson (2014) proved that for n = 2 there exist two quadratic packing polynomials on the sector I(r). Here, for n > 2 we construct 2n−1 packing polynomials on multidimensional integer sectors. In particular, for each packing polynomial on Nn we construct a packing polynomial on the sector I(1, . . . , 1).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Methods for Efficient Homomorphic Integer Polynomial Evaluation based on GSW FHE

We introduce new methods to evaluate integer polynomials with GSW FHE. Our methods cause much slower noise growth and result in much better efficiency in the evaluation of low-degree large plaintext space polynomials. One method is about a new encryption procedure and its application homomorphic integer multiplication. The other is about an extended version to SIMD by packing more integers diag...

متن کامل

Combinatorial Analysis of Diagonal, Box, and Greater-Than Polynomials as Packing Functions

A packing function is a bijection between a subset V ⊆ Nm and N, where N denotes the set of non negative integers N. Packing functions have several applications, e.g. in partitioning schemes and in text compression. Two categories of packing functions are Diagonal Polynomials and Box Polynomials. The bijections for diagonal ad box polynomials have mostly been studied for small values of m. In a...

متن کامل

An LP with Integrality Gap 1+epsilon for Multidimensional Knapsack

In this note we study packing or covering integer programs with at most k constraints, which are also known as k-dimensional knapsack problems. For integer k > 0 and real ǫ > 0, we observe there is a polynomial-sized LP for the k-dimensional knapsack problem with integrality gap at most 1+ ǫ. The variables may be unbounded or have arbitrary upper bounds. In the (classical) packing case, we can ...

متن کامل

The Galois Complexity of Graph Drawing: Why Numerical Solutions Are Ubiquitous for Force-Directed, Spectral, and Circle Packing Drawings

Many well-known graph drawing techniques, including force directed drawings, spectral graph layouts, multidimensional scaling, and circle packings, have algebraic formulations. However, practical methods for producing such drawings ubiquitously use iterative numerical approximations rather than constructing and then solving algebraic expressions representing their exact solutions. To explain th...

متن کامل

The Calogero-sutherland Model and Generalized Classical Polynomials

Multivariable generalizations of the classical Hermite, Laguerre and Jacobi polynomials occur as the polynomial part of the eigenfunctions of certain Schrödinger operators for Calogero-Sutherland-type quantum systems. For the generalized Hermite and Laguerre polynomials the multidimensional analogues of many classical results regarding generating functions, differentiation and integration formu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2016